Code Stroke Intervention: Endovascular therapy for aSAH and management

J. DIEGO LOZANO MD
INTERVENTIONAL NEURORADIOLOGY
Disclosures

None
Part B. Objectives

- Epidemiology of aSAH
- Concept:
 - What is a brain aneurysm
 - Hunt and Hess grading scale
 - Know about severity of bleed: modified Fisher scale (from CT head)
- ED management
- Case
 - Management from RN perspective, after endovascular therapy
Introduction – Brain aneurysm

- Definition: Persistent pathologic dilatation of an arterial wall.
- An estimated 6 million people in the United States have an unruptured brain aneurysm, or 1 in 50 people.
- Aneurysms are estimated to occur in approximately 2% to 6% of the population (based on autopsy and angiographic studies).
- Non traumatic SAH represents about 3% of all strokes in the US.
- Worldwide incidence: 2 to 16 per 100,000 people.
- Women are more likely to have SAH → 1.24 : 1.
- Minority groups, particularly AA and Hispanic populations more frequently affected compared to white Americans.
Introduction

- Incidence of SAH increases with age
 - Mean onset of ≥ 50 years
- ~80% of SAH, a ruptured cerebral aneurysm is found
 - No source of bleeding in 15% of cases
 - Other etiologies such as AVM in 5%
Introduction – a SAH

- Mortality rates 8% to 67%
 - Median is 30% in the US
- Prehospital deaths estimated between 10% to 15%
- There has been a significant decrease in case-fatality rates of SAH across the globe
 - Likely owing to changes in managements of patients with SAH
 - Neurocritical care
 - Endovascular therapy
 - Refined microsurgical techniques
- However, despite the decrease in case-fatality rates, about half of survivors experience significant chronic reduction in health-related quality of life
Introduction

- A large proportion of survivors do not return to their previous level of employment, social independence and interactions, or personal or family relationships even 5 years after the event.

- This may be due to a combination of factors, including
 - Impaired physical functioning
 - Cognitive deficits particularly executive function and memory
 - Mood and emotional symptoms e.g. anxiety, depression and PTSD
 - Personality changes
Subarachnoid Space
Common locations of brain aneurysms

~75% of brain aneurysms
In these locations:
- Acomm
- Pcomm
- MCA bifurcation
Aneurysms can be classified by size and by configuration.
<table>
<thead>
<tr>
<th>Risk Factors for Subarachnoid Hemorrhage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonmodifiable Risk Factors</td>
</tr>
<tr>
<td>Age</td>
</tr>
<tr>
<td>Female sex</td>
</tr>
<tr>
<td>Prior history of aneurysmal subarachnoid hemorrhage</td>
</tr>
<tr>
<td>Family history of subarachnoid hemorrhage</td>
</tr>
<tr>
<td>History of aneurysm in first-degree relatives (especially in two or more relatives)</td>
</tr>
<tr>
<td>Modifiable Risk Factors</td>
</tr>
<tr>
<td>Hypertension</td>
</tr>
<tr>
<td>Cigarette smoking</td>
</tr>
<tr>
<td>Heavy alcohol use</td>
</tr>
<tr>
<td>Sympathomimetic drug use (eg, cocaine)</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Certain genetic disorders (eg, autosomal dominant polycystic kidney disease, type IV Ehlers-Danlos syndrome)</td>
</tr>
<tr>
<td>Anterior circulation aneurysms are more likely to rupture in patients who are younger than 55 years of age</td>
</tr>
<tr>
<td>Posterior circulation aneurysms are more likely to rupture in men</td>
</tr>
<tr>
<td>Significant financial or legal problems within the past 30 days</td>
</tr>
<tr>
<td>Cerebral aneurysms of more than 7 mm in diameter</td>
</tr>
</tbody>
</table>
Main emphasis when caring for patients with SAH

- Prompt evaluation and diagnosis
- Immediate transfer to appropriate centers
- Expeditious diagnosis and treatment of the bleeding source
- Overall good neurocritical care adhering to available treatment guidelines.
Clinical Presentation

- SAH typically presents with sudden and severe headache
 - Described as the worst headache ever
- Nausea, vomiting → d/t transient elevation in intracranial pressure (ICP)
- Photophobia
- Neck pain
- Loss of consciousness → d/t more sustained and severe ICP; can lead to coma and brain death.

Physical examination should include
- Determination of level of consciousness, fundoscopic evaluation
- Determination of meningeal signs
- Presence of focal neurologic deficits → in about 10% of cases and are associated with worse prognosis when thick SAH clot or parenchymal hemorrhage
Clinical presentation

- Occasionally, patients may present with seizures, acute encephalopathy and concomitant subdural hematoma and head trauma
 - → diagnosis of SAH may become more elusive

- A minority of patients may have a warning “sentinel” headache days to weeks before an aneurysmal SAH
 - → though to represent a small aneurysmal leak
 - Unfortunately this information is only obtained retrospectively as most of the time the headache is transient and head CT scanning is unrevealing in about 50% of cases
Step 1: Diagnosis

- **Head CT scan**
 - Sensitivity of 98%-100% for detection of SAH within 12 hours of symptom onset when compared to LP
 - Sensitivity decreases to 93% at 24 hours
 - Sensitivity only 50% at 7 days

- **LP**
 - Recommended in any patient with suspected SAH and negative or equivocal results on head CT.
 - CSF should be collected in 4 consecutive tubes and RBC count should be determined in tubes #1 and #4.
 - Diagnosis: Elevated opening pressure, elevated RBC count that does not significantly decrease from tube #1 to tube #4, and xanthochromia
Main focus initially is stabilization of airway, breathing and circulation

Patients who are unable to protect their airway should be intubated immediately
 - Most common indications: Coma, HCP, seizure, need for sedation for significant agitation

Once deemed stable → CT brain

Avoid hypertension
 - MAP <110 mmHg or systolic less than 140 mmHg until the ruptured aneurysm is secured
 - Use premorbid baseline blood pressure to refine targets and avoid hypotension
 - Pain control → best achieved with short acting opiates
 - I.v. labetalol 5mg to 20 mg pushes
 - Nicardipine 5 to 15 mg/h continuous
Step 2: Disease severity scoring

- What are the strongest predictors of neurologic complications and outcomes after SAH?
 - Severity of neurologic impairment on presentation
 - Amount of SAH on admission
<table>
<thead>
<tr>
<th>Grade</th>
<th>Symptoms</th>
<th>Other Neurological Signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Asymptomatic or mild headache</td>
<td>Minimal/slight nuchal rigidity</td>
</tr>
<tr>
<td>2</td>
<td>Moderate to severe headache</td>
<td>Nuchal rigidity, no neurologic deficit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(except for cranial nerve palsy)</td>
</tr>
<tr>
<td>3</td>
<td>Drowsiness or confusion</td>
<td>Mild focal neurologic deficit</td>
</tr>
<tr>
<td>4</td>
<td>Stupor</td>
<td>Moderate to severe hemiparesis</td>
</tr>
<tr>
<td>5</td>
<td>Coma</td>
<td>Decerebrate posturing</td>
</tr>
</tbody>
</table>

Step 3: Admission to High-Volume Centers

- Transfer to high volume center, if not already in one
- Admit the patient to a dedicated neurocritical care unit
- Have the patient undergo a multidisciplinary evaluation for the management of an unsecured cerebral aneurysm
Case #1

- 45 y/o right handed woman presented to PSC with sudden onset of severe H/A, N/V and syncope 1 hour prior to presentation while she was moving furniture at her house
- PMHx of heavy smoking and cocaine use

- VS; BP 180/100 mmHg, HR 105’, SaO2 97% on room air, T 36.5 C

- GCS15, Hunt and Hess grade 2, modified Fisher scale score 3
<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Neurologic Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Asymptomatic or mild headache</td>
<td>Minimal/slight nuchal rigidity</td>
</tr>
<tr>
<td>2</td>
<td>Moderate to severe headache</td>
<td>Nuchal rigidity, no neurologic deficit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(except for cranial nerve palsy)</td>
</tr>
<tr>
<td>3</td>
<td>Drowsiness or confusion</td>
<td>Mild focal neurologic deficit</td>
</tr>
<tr>
<td>4</td>
<td>Stupor</td>
<td>Moderate to severe hemiparesis</td>
</tr>
<tr>
<td>5</td>
<td>Coma</td>
<td>Decerebrate posturing</td>
</tr>
</tbody>
</table>

Case #1

Modified Fisher scale

- **Grade I:** no or min subarachnoid Blood, no IWH
 - 24%
- **Grade II:** Min subarachnoid Blood with IWH
 - 33%
- **Grade III:** Diffuse or focal, thick Subarachnoid blood, no IWH
 - 33%
- **Grade IV:** Diffuse or focal, thick Subarachnoid blood with IWH
 - 40%

risk of symptomatic vasospasm
Case #1

- She was started on a nicardipine drip to keep her SBP < 140 mmHg
- Transferred to a CSC
- DSA demonstrated an irregular, multilobed and wide-neck Acomm aneurysm
- After discussion with INR, NeuroSx and neuroICU, patient underwent surgical clipping
Clipping vs. coiling

Clipping

Coiling
Rerupture risk

- Rebleeding in unsecured aneurysms:
 - 1st 24 hours → risk is 4% to 15%
 - 1st 10 days → 2% to 4% per day for the first 10 days
 - 30% during the first 30 days
 - 2-4% per year thereafter

- Main risk factors associated with rebleeding:
 - SBP > 160 mmHg
 - Poor neurologic grade
 - Intracerebral or intraventricular hematomas
 - Ruptured posterior circulation aneurysms
 - Aneurysms > 10 mm in size

- Rebleeding rate in secured (treated aneurysms)
 - Coiling: 1-2%
 - Clipping ~1%
Best measure to reduce the risk of rebleeding

- Early treatment of unsecured aneurysms (as seen on previous slides)
- Coiling vs. clipping

TABLE 1-6 Preferences for Treatment of Unsecured Aneurysms

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Preferred Treatment Modality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced age</td>
<td>Endovascular coiling</td>
</tr>
<tr>
<td>Poor clinical grade</td>
<td>Endovascular coiling</td>
</tr>
<tr>
<td>Multiple underlying systemic conditions</td>
<td>Endovascular coiling</td>
</tr>
<tr>
<td>Aneurysms with wide neck-to-body ratio</td>
<td>Surgical clipping</td>
</tr>
<tr>
<td>Normal arterial branches arising from dome or body of aneurysm</td>
<td>Surgical clipping</td>
</tr>
<tr>
<td>Middle cerebral artery aneurysm</td>
<td>Surgical clipping</td>
</tr>
<tr>
<td>Top-of-the-basilar aneurysm</td>
<td>Endovascular coiling</td>
</tr>
<tr>
<td>Aneurysm associated with large parenchymal hematoma</td>
<td>Surgical clipping</td>
</tr>
<tr>
<td>High surgical risk</td>
<td>Endovascular coiling</td>
</tr>
<tr>
<td>Patient preference</td>
<td>Endovascular coiling</td>
</tr>
<tr>
<td>Clinical equipoise*</td>
<td>Endovascular coiling</td>
</tr>
</tbody>
</table>

* Unsecured aneurysm is considered equally suitable for either endovascular coiling or surgical clipping.
Step 4: Treatment of unsecured aneurysms

- Surgical clipping vs. Endovascular coiling
- Choice depends on several factors including:
 - Age
 - Aneurysm location
 - Morphology of the aneurysm
 - Relationship to adjacent vessels
- Because of the complexity of determining the most appropriate treatment for individual patients, it is recommended that a multidisciplinary team made up of cerebrovascular neurosurgeons, endovascular practitioners and neurointensivists confer to reach a consensus
- Overall, endovascular coiling should be preferred over surgical clipping whenever possible.
Step 5: ICU management

- More than 75% of SAH experience SIRS → likely as a result of elevated levels of inflammatory cytokines.
- SAH patients at higher risk for
 - HCP
 - Cerebral edema
 - Delayed cerebral ischemia (DCI)
 - Rebleeding
 - Seizures
 - Neuroendocrine abnormalities that lead to impaired body regulation of Na+, water and glucose
- SAH also unleashes hypothalamic-mediated changes, including increased sympathetic and parasympathetic drive, that result in cardiac and pulmonary complications. → EKG changes, arrhythmias, impaired cardiac contractility (eg, Takotsubo cardiomyopathy), troponinemia, and myocardial necrosis.
- Pulmonary complications: Neurogenic pulmonary edema
Seizures

- 20%-26% may present with seizure like episodes
- Patients with MCA bifurcation aneurysms, concomitant intraparenchymal hematomas, and poor clinical grade are at higher risk for seizures
- Patients treated with coiling have lower rates of seizures
- Long term risk for epilepsy is low
- Prophylactic anticonvulsants, 3 to 7 days.
- Frequency of subclinical seizure may be high in patients with poor-grade SAH → continuous EEG monitoring
Hydrocephalus

- Acute symptomatic HCP occurs in about 20% of patients with SAH, usually within the first few days after symptom onset.

What to look for?
- Decreased level of consciousness
- Signs of increased ICP such as impaired upward gaze and HTN

- Immediate f/u CT head is warranted
- EVD may follow
 - Some centers perform a lumbar drain
- Weaning the patient of an EVD should begin shortly after aneurysm obliteration or within 48 hours of insertion if patient is neurologically stable
- ~60% of patients who undergo EVD will have successful weaning; others may require VPS.
Hydrocephalus

Arachnoid granulations get clogged by subarachnoid blood causing hydrocephalus

CSF Pathways

- CSF is produced by modified ependymal cells in choroid plexus
- It circulates from lateral ventricles into the third ventricle through the foramen of monro.
- It then passes into the fourth ventricle through the narrow cerebral aqueduct.
- From the fourth ventricle, it passes slowly through median aperture (foramen of magendie) and lateral foramina (foramen of luschka) and enters the subarachnoid space over brain and spinal cord.
- It is reabsorbed into venous sinus blood via arachnoid granulations.
Hydrocephalus

NCCT
Massive hyper dense subarachnoid bleed in basal cisterns, Sylvain fissures and hemispheric cortical sulci with hydrocephalus
VASOSPASM – PROPHYLAXIS(?)

- Nimodipine 60 mg PO q 4 hours for 21 days
- Affords neuroprotection without decreasing the frequency of angiographic vasospasm
- Adverse effects: constipation and hypotension
- Maintain euvolemia
 - Hypervolemia has not been shown to improve CBF or decrease frequency of vasospasm/DCI
 - No established methodology as to how to achieve euvolemia
 - Many intensivists use a combination of methods: strict monitoring of fluid balance, central venous pressure, echocardiogram, and stroke volume variation
 - In practice, euvolemia can be achieved by replacing urine output and even administering fludrocortisone or hydrocortisone in patients with significant diuresis
Vasospasm and delayed cerebral ischemia (DCI)

<table>
<thead>
<tr>
<th>Modified Fisher Grade</th>
<th>Risk of Vasospasm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Focal of diffuse thin (<1mm) SAH, no IVH</td>
<td>24%</td>
</tr>
<tr>
<td>2 - Focal or diffuse thin SAH, with IVH</td>
<td>33%</td>
</tr>
<tr>
<td>3 - Thick (>1mm) SAH, no IVH</td>
<td>33%</td>
</tr>
<tr>
<td>4 - Thick SAH, with IVH</td>
<td>40%</td>
</tr>
</tbody>
</table>
Most likely, the main driver is the release of oxyhemoglobin and erythrocyte contents through hemolysis, which unleashes a host of inflammatory and proapoptotic factors.

The risk of vasospasm increases with:
- Thickness of SAH, density, location, persistence of the SAH
- Poor clinical grade, loss of consciousness at ictus, cigarette smoking, cocaine use, SIRS, hyperglycemia and HCP

However, predicting who will have vasospasm is difficult.
Vasospasm and delayed cerebral ischemia (DCI)

FIG. 45.3. The daily percentage probability for the development of symptomatic vasospasm (*solid line*) or rebleeding (*dashed line*) after SAH. Day 0 denotes day of onset of SAH.
Diagnosis of vasospasm/DCI

- Not easy
- Frequent neuro checks, at least q 2 hours
- Suspect DCI if new neurologic impairment of at least 2 points on GCS that lasts for more than 1 hour and cannot be explained by any other cause.

Monitoring: Multimodal and includes
- ICP, CPP, CBF, EEG
- TCD, DSA, CTA, CT perfusion
- MR brain, MRA, MR perfusion
Delayed Cerebral Ischemia (DCI)

- Once the diagnosis of cerebral vasospasm is confirmed (after ruling out other neurologic and systemic disorders) treat with:
 - Induced Hypertension
 - Endovascular therapy

- Goal: Complete resolution of symptoms.

- Management of DCI is carried out in stepwise fashion

- Final confirmation and treatment must be done within 2 hours of symptom onset.
Treatment

- I.v. bolus of NS 1 to 2 liters is administered
- Hypertension is induced with Phenylephrine or Norepinephrine
- Blood pressure augmentation progresses in stepwise fashion with frequent assessment of neurologic function at each 10 mmHg change in systolic (up to 200 mmHg) or MAP
- If neurologic deficits persist then patients undergoes CT/CTA/CTP followed by DSA for endovascular therapy
- Induced hypertension is maintained for at least 72 hours or until stability is achieved and is slowly weaned off after that
Case #1 continued

- Patient continued to evolve satisfactorily with normal Transcranial Doppler (TCD)
- On Postbleed day 6, TCD revealed an increase in Mean Flow Velocity (MFV) in the right MCA from 80 cm/s to 180 cm/s
Case #1 continued

- Patient continued to evolve satisfactorily with normal Transcranial Doppler (TCD).

- On Postbleed day 6, TCD revealed an increase in Mean Flow Velocity (MFV) in the right MCA from 80 cm/s to 180 cm/s.

- The next morning the patient developed sudden onset of left hemiparesis and confusion.

- CT brain showed no rebleeding, cerebral edema or HCP.

- She received a bolus of 500 mL of NS via i.v. and was started on norepinephrine drip with some improvement on her left hemiparesis but without resolution.

- BMP was normal, WBC was 14K.

- F/U TCD showed right MCA MFV of 220 cm/s and a Lindegaard ratio of 6.
CASE #1 CONTINUED
Case #1 continued

- Her SBP was maintained at greater than 180 mmHg for 3 more days.

- TCD showed improvement in MFV by day 9 to less than 100 cm/s; weaned off norepinephrine by day 10.

- On day 11 she developed a decreased level of consciousness without focal neurological findings except for limited upward gaze.

- F/U CT showed HCP requiring an EVD.
Case #1 continued

- Several attempts to wean off the patient from the EVD failed; she underwent a programmable VP shunt placement on day 15.

- She was transferred to a regular floor.

- Discharged to home on day 17 after clearance by physical and occupational therapies with instructions to continue on oral nimodipine to complete 21 days (for four more days).

- Schedule follow-up in vascular neurology and...
Medical complications

- Cardiopulmonary
 - Minor EKG changes to severe dilated cardiomyopathy and ARDS
 - Elevated troponin also frequent – up to 30% of patients with SAH

- Fever
 - Most common non neurologic complication seen in up to 70% of patients
 - Antipyretic medications \rightarrow surface cooling or intravascular devices while avoiding shivering

- Thromboembolism
 - DVT incidence 2% to 20%
 - SCDS for everyone
 - Heparin SQ 24 hours after aneurysm obliteration
Medical complications

- Glucose abnormalities
 - Hyperglycemia is a common phenomenon. Maintain level between 80 to 200 mg/dL
- Hyponatremia:
 - The most common electrolyte disorder seen in up to 30% of SAH patients
 - Hyponatremia has been associated with the development of DCI and poor clinical outcomes
 - Can be secondary to cerebral salt wasting or inappropriate secretion of ADH
 - Traditionally the former is treated with volume infusion and the latter with fluid restriction
 - However, hypovolemia is associated with poor outcomes, so fluid restriction should be avoided in patients with SAH
 - Oral free water restriction and maintain euvolemia
 - Continuous infusion of hypertonic saline (1.5% to 3%)
 - Fludrocortisone if diuresis is active
Conclusion

- SHA is a neurologic emergency with high morbidity and mortality
- SAH is more frequent in women than men
 - More frequent in minority populations
- Main areas when caring for patients with SAH should be the following:
 - Prompt evaluation and diagnosis
 - Immediate transfer to appropriate centers
 - Expeditious diagnosis and treatment of bleeding source
 - Overall good neurocritical care adhering to available treatment guidelines
- Main neurologic complications: HCP, seizures, cerebral edema, delayed cerebral ischemia, and neuroendocrine disorders
- Patients with SAH frequently experience cardiopulmonary complications, which can be life threatening.